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ABSTRACT

Strategies to improve covariance estimates for ensemble-based assimilation of near-surface observations
in atmospheric models are explored. It is known that localization of covariance estimates can improve
conditioning of covariance matrices in the assimilation process by removing spurious elements and increas-
ing the rank of the matrix. Vertical covariance localization is the focus of this work, and two basic ap-
proaches are compared: 1) a recently proposed hierarchical filter approach based on sampling theory and
2) a more commonly used fifth-order piecewise rational function. The hierarchical filter allows for dynamic
estimates of localization functions and does not place any restrictions on their form. The rational function
is optimized for every analysis time of day and for every possible observation and state variable combina-
tion. The methods are tested with a column model containing PBL and land surface parameterization
schemes that are available in current mesoscale modeling systems. The results are expected to provide
context for assimilation of near-surface observations in mesoscale models, which will benefit short-range
mesoscale NWP applications. Results show that both the hierarchical and rational function approaches
effectively improve covariance estimates from small ensembles. The hierarchical approach provides local-
ization functions that are irregular and more closely related to PBL structure. Analysis of eigenvalue spectra
show that both approaches improve the rank of the covariance matrices, but the amount of improvement
is not always directly related to the assimilation performance. Results also show that specifying different
localization functions for different observation and state variable combinations is more important than
including time dependence.

1. Introduction

Ensemble-based filters for data assimilation continue
to gain popularity because of their effectiveness, ability
to estimate probability density functions (pdfs), and
ease of implementation. Several methods for solving
the analysis equation exist, but all rely on Monte Carlo
approximations to prior (background) pdfs gleaned
from an ensemble of model runs (e.g., Evensen 1994).

Because the ensemble is typically small compared to
the number of degrees of freedom in the physical sys-
tem (here a model of atmospheric evolution but more
generally the atmosphere) under consideration, Monte
Carlo methods usually suffer from rank-deficient back-
ground error covariance matrices. Houtekamer and
Mitchell (1998) showed that applying an additional,
horizontal-distance-dependent restriction (localization)
on the estimated covariances reduces the negative ef-
fects of poorly estimated covariance values that are far
away from an observation. Subsequent work (Houteka-
mer and Mitchell 2001; Hamill et al. 2001; Mitchell et al.
2002) has further demonstrated and clarified the ben-
efits of horizontal localization on assimilation perfor-
mance. The question of vertical localization has been
addressed in a few specific instances (Keppenne and
Rienecker 2002; Whitaker et al. 2004; Houtekamer et
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al. 2005) but has received much less attention in gen-
eral. Here we examine the special case of vertical lo-
calization for near-surface observations of temperature,
winds, and humidity.

Hacker and Snyder (2005) showed the potential for
near-surface observations to accurately determine a
profile in an observation system simulation experiment
(OSSE) framework with an ensemble filter and a col-
umn model. Those experiments used large ensembles
of 100 members to avoid any need for localization. Be-
cause it appears that large ensembles for mesoscale ap-
plications will not be feasible for some time, localiza-
tion may be a necessity in practice. Here we study the
effects of small ensembles on the column, and ap-
proaches to addressing them, within an OSSE frame-
work similar to that presented in Hacker and Snyder
(2005).

Small ensembles suffer from sampling error that con-
tributes to the need for localization. Spatial localization
has been shown to mitigate some of the effects of small
and spurious correlations (e.g., Houtekamer and Mitch-
ell 1998, 2001; Hamill et al. 2001; Whitaker and Hamill
2002) by eliminating them far from an observation.

Joint observation-state error covariances in the PBL
are expected to be transient, anisotropic, and inhomo-
geneous. Unlike an integrated quantity such as pres-
sure, other near-surface parameters have a more tenu-
ous connection to components of the flow aloft. This
may limit the effectiveness of isotropic, stationary co-
variance models typically used for localization. To
achieve maximum benefit from surface observations in
an ensemble-filter data assimilation system, the proper
vertical localization may be crucial.

Additionally, localization in multivariate systems
(i.e., those with different types of observation and state
variables) with functions of distance alone is a ques-
tionable approach. Nonlinear relationships between
variables introduce imbalances under any distance-
dependent localization, and the problem is worse when
the length scale is short (Mitchell et al. 2002) as it is
expected to be in the PBL. The appropriate vertical
localization could be O(10 m) when the surface de-
couples from the atmosphere in the nocturnal surface
layer.

Smooth functions typically used for localization, such
as the fifth-order piecewise rational function of Gaspari
and Cohn [1999, their Eq. (4.10)], may also be inappro-
priate under a sharp transition from a well-mixed PBL
to a stable layer aloft. This fact introduces an additional
difficulty when considering that the localization func-
tion should be mathematically acceptable, implying
that it is positive definite and the underlying correlation
function is continuous (e.g., Weber and Talkner 1993;

Gaspari and Cohn 1999; Gneiting 1999). This issue is
also addressed in Furrer and Bengtsson (2007) but is
often ignored in practice because the addition of obser-
vational uncertainty often ensures that the denomina-
tor in the gain matrix is positive definite.

Anderson (2006) recently proposed a method to es-
timate the appropriate localization based on sampling
theory. That approach provides a way to use state-
dependent localization dynamically during an assimila-
tion cycle. Dynamic localization requires a large en-
semble that avoids major rank deficiency while provid-
ing good statistics to estimate significant covariances,
but it may be impractical to run in an operational set-
ting. Alternately, localization functions can be derived
from an experiment with a large ensemble and later
applied to a smaller ensemble with the same model.
The small ensemble will produce rank-deficient cova-
riances that can be localized with some kind of average
functions accumulated from the large experiment. A
user must make decisions about whether to average in
time or space, or both.

Here we use a column model containing a PBL pa-
rameterization to run OSSEs designed to test different
vertical localization approaches. A large experiment
with the hierarchical filter (HF; Anderson 2006) pro-
vides both average localization functions and informa-
tion for tuning the Gaspari–Cohn (GC) function. We
present results in terms of assimilation performance
and improvement of covariance rank.

Results from this study can be synthesized to provide
recommendations on vertical localization, including
whether legitimate covariance functions must be used
and whether multivariate localization that depends on
distance alone is sufficient. The next section describes
the model and experiments. Section 3 characterizes the
empirically estimated localization functions. Section 4
compares the performance of the assimilation with dif-
ferent localization techniques. Section 5 investigates co-
variance rank, and section 6 summarizes the results and
provides additional comments.

2. Model and experiments

a. Column model

A column model containing a suite of physical pa-
rameterization schemes is suitable for the experiments
described here. We are interested in only vertical struc-
tures and relationships within and near the PBL, and a
column model allows experimentation at a fraction of
the cost associated with a 3D mesoscale model. Large
ensembles are feasible, enabling convergence of results
and experimentation with sensitivity to ensemble size.
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Our model can be thought of as a simpler cousin to
the Weather Research and Forecast (WRF) mesoscale
model (Skamarock et al. 2005). It contains the same
suite of physical parameterizations for subgrid pro-
cesses associated with the soil, surface layer, and PBL.
For these experiments, we chose the Mellor–Yamada–
Janjić (MYJ) PBL scheme (Janjić 2001) and the Noah
land surface model (LSM) for the soil (Ek et al. 2003).
The vertical grid is defined as 33 vertically stretched
atmospheric levels, with the first layer extending to ap-
proximately 40 m above the surface and a top at ap-
proximately 4800 m. Further details of the column
model are given in Pagowski (2004) and Pagowski et al.
(2005). Further details can be found in appendix A.

Initial conditions, large-scale forcing, and surface ra-
diation are imposed by randomly sampling two fore-
casts from a (warm) season of WRF real-time forecasts
at a column located over Oklahoma, then combining
them with a uniform random coefficient between zero
and one (U[0, 1]). WRF 36-h forecasts from the Bow
Echo and Mesoscale Convective Vortex Experiment
(BAMEX) observation period spanning 3 May through
14 July 2003 constitute the sample. Forecasts were
launched at 0000 UTC every day, on a �x � 4 km grid.
More details on the sampling approach are available in
Hacker and Snyder (2005). This approach permits con-
struction of a large ensemble, containing slow time
scales, with forecast error that is saturated with respect
to a conditional climatology. Although the distribution
of large-scale forcing is narrowed with this approach,
the small-scale effects on the column are isolated and
ensembles larger than the WRF sample are available.

b. Hierarchical filter

The hierarchical filter proposed by Anderson (2006)
is used to estimate the appropriate localization func-
tions. In essence, it is a method to estimate the robust-
ness of covariance estimates from the ensemble. Our
experiments use the ensemble adjustment Kalman filter
(EAKF), documented in Anderson (2001). Because it is
computationally inefficient to compute the background
error covariance and gain matrices directly, several al-
ternatives to computing the analysis increments have
emerged. Anderson (2003) showed that analysis incre-
ments in the statistical analysis equation can be com-
puted by first linearly regressing the ensemble of ob-
servation increments (innovations) onto the prior
(background) ensemble, computing a posterior distri-
bution of innovations, and then applying the regression
coefficients to update the ensemble. When the en-
semble is broken into groups, the regression can be
performed for each group separately. The spread of
regression coefficients among the groups is a measure

of the noise in the estimates, and the magnitude of the
regression coefficients themselves is a measure of the
signal. Just as traditional localization diminishes the im-
portance of far-removed covariance estimates that typi-
cally have poor signal-to-noise ratios, these estimates
can be used to determine in which covariances (here
codified in regression coefficients) we have less confi-
dence. Thus, the signal-to-noise estimates provide a re-
gression confidence factor (RCF). Further details de-
scribing how the RCF is computed can be found in
appendix B.

The hierarchical filter can be used directly during
assimilation with a relatively large ensemble. Alter-
nately, an inexpensive assimilation system can be
constructed by collecting RCFs from large-ensemble
experiments and imposing RCF values on smaller en-
sembles within the straightforward EAKF implementa-
tion. The large ensemble, of size M � N, is broken into
M groups of N members each, and the hierarchical filter
provides estimates of robust covariances for a smaller
ensemble of size N. One key question we address is
whether this option is viable for PBL analysis and fore-
casting, where the significant covariances are expected
to be highly variable in time and space.

c. Experiment setup

Perfect-model OSSEs are designed to produce robust
RCFs that can be used to deduce appropriate vertical
localization for assimilating near-surface observations.
In all experiments, temperature and water vapor mix-
ing ratio at z � 2 m (T2, Q2) and wind components at
z � 10 m (U10, V10) are assimilated hourly. To accumu-
late robust statistics the experiments are repeated 100
times, each with a different evolution of the true state.
The simulated observations are contaminated with un-
biased, uncorrelated noise drawn from a Gaussian dis-
tribution with error variances 1.0 K2, 1.0 � 10�6 kg2

kg�2, and 2.0 m2 s�2, respectively, for T2, Q2, and (U10,
V10), before assimilation. These agree with the values
used in Hacker and Snyder (2005). Initial conditions
and forcing for truth and the ensemble are drawn ran-
domly from the WRF climatology, where each forecast
begins at 0000 UTC. All column model simulations are
24 h, beginning at 1200 UTC. Beginning 12 h later than
the WRF forecasts avoids any moisture spinup in the
WRF forecasts and also any adjustment from the initial
conditions to its own internal climatology (cf. Hacker
and Snyder 2005). Note that time series will be pre-
sented from 12 to 36 h, which is the forecast hour rela-
tive to the forcing from the WRF, and is 0–24 h for the
column model.

The first set of three experiments provides a basis for
quantifying the effects of rank-deficient covariances in
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later experiments and for exploring the structure of the
RCFs. It includes free-running ensembles (no assimila-
tion), assimilation with no localization, and assimilation
with dynamically estimated localization. For each of
these experiments, a large ensemble having 100 mem-
bers is used. In the third experiment, localization func-
tions are estimated using groups of size M � 4, each
with N � 25 members. For reference, Table 1 summa-
rizes the experiments, which are further described in
later sections.

3. Regression confidence factors

Here we describe the RCFs estimated from the large
ensembles (M � N � 100) with M � 4 and N � 25.
First, examples are shown to get an idea of the spatial
and temporal variability in the estimates. Next, we
evaluate some basic performance statistics with and

without assimilation, and with dynamic localization
provided by the hierarchical approach. The metrics for
comparison are the ensemble-mean error and the
spread–error ratio. Spread is defined as the standard
deviation about the ensemble mean for each state vari-
able, averaged over the profile, and error is the RMSE
of the ensemble-mean profile. All results are then av-
eraged over the 100 runs. The spread–error ratio would
be 1.0 for an infinite ensemble with a perfect model, a
perfect ensemble filter, and Gaussian error statistics,
but error in sampling the complete error growth distri-
bution and deviations from Gaussian statistics act to
reduce it.

a. Time and space dependence

Examples prove useful for demonstrating the spatial
and temporal variability of the estimated localization
functions. Here we show the group-mean (among M �
4 groups) regression coefficients, RCFs, and the prod-
uct of the two, averaged over all 100 experiments. The
product of the regression coefficient and the RCF is the
factor that quantifies the effect of the innovation on the
state in computing the analysis increment. Alterna-
tively, it is the relevant part of the localized gain matrix.
Results valid at 0000 UTC (late afternoon local time)
are shown in Fig. 1 for the univariate case where the
observation is the same physical quantity as the profile
against which the increments are regressed.

The vertical variability is evident in Fig. 1. None of
the RCF profiles (dotted) are reminiscent of a typical
localization function, which may resemble a step func-
tion, the GC function, a compact cosine, or a compact
exponential. With the exception of the wind (which is
nearly monotonic), any monotonically decreasing func-
tion of distance would erroneously reduce the impact of
an observation on layers aloft, according to the sam-
pling theory behind the hierarchical filter.

FIG. 1. Group-mean regression coefficients (dashed), regression confidence factors (dotted), and their product
(solid) for the univariate case: (a) T2 observations and T profiles, (b) U10 observations and U profiles, and (c) Q2

observations and Q profiles. Results are averaged over all 100 experiments valid at 0000 UTC.

TABLE 1. Experiment summary. The subscripts denote the
number of ensemble members.

Name Assimilation Localization

NO100 No None
NL100 Yes None
HF100 Yes HF with dynamic localization (M � 4,

N � 25)
NL10 Yes None
HF10 Yes Time-dependent, experiment-averaged

HF100 functions
HFS10 Yes Time-averaged, experiment-averaged

HF100 functions
GC10 Yes Time-dependent optimized GC

functions
GCS10 Yes Time-averaged optimized GC

functions
GCD10 Yes Time-averaged GC functions

optimized for T but used for all
observation/variable combinations
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The effect of the well-mixed afternoon PBL is evi-
dent in each profile. The RCFs on the T profiles are
rather large throughout the domain, indicating high
confidence in coefficients well above the PBL depth
(zi). The minimum at approximately z � 1600 m cor-
responds to variability in zi. Similarly, the larger coef-
ficients above z � 3000 m, combined with a large RCF,
suggest that information from the observations of T2

may be important aloft. The regression coefficients for
U show the largest values above zi, counterintuitively
suggesting that the diagnostic 10-m wind is more closely
tied to winds in the free atmosphere aloft than winds in
the PBL in an average sense. Corresponding RCFs sug-
gest this relationship is robust. The Q coefficient pro-
files suggest that moisture is well mixed in the PBL, as
expected, but uncorrelated where z � zi. The variability
in the PBL depth shows up as a local minimum near
z � 1700 m. Although the minima are all related to zi,
their differences suggest it would be difficult to cor-
rectly localize all three state components with a single
function of distance alone.

The temporal variability is evident when comparing
Fig. 1 to Fig. 2, which is valid at 1200 UTC (presunrise
local time). The profiles suggest an interface similar to
the top of a well-mixed PBL, but this is actually the top
of the residual layer from the previous day, which is still
well mixed but somewhat decoupled from the surface.
These suggest that memory in the system is important
to covariance structures and indicate one advantage of
recursive filters (filters with output dependent upon all
previous input) when assimilating surface observations.
The temperature near the surface is more closely cor-
related to the temperature aloft than it is to the tem-
perature in the PBL, and the RCF indicates high con-
fidence in that connection. This could be caused by
horizontal advection in the inhomogeneous residual
layer. The free atmosphere is more horizontally homo-
geneous at scales commensurate with advection during
quiescent summer periods. The coefficients for U are

larger than at 0000 UTC, but the RCF is diminished
aloft, showing the effect of the surface decoupling from
the free atmosphere. The large coefficients and RCFs
in the PBL for the Q profiles suggest an extra long
memory in the connection between Q2 and Q in the
residual layer. The primary effect of dynamically esti-
mating RCFs and using them to localize is examined
next.

b. Effects of localization on a large ensemble

The effect of both observations and localization
within the 100-member ensemble can be summarized
by quantifying profile-averaged spread and skill, and by
an estimate of the effect on the rank of the ensemble
covariance. All results are also averaged over the 100
experiments. The experiments are denoted as follows:
without any data assimilation (NO100), assimilating ob-
servations but without any localization (NL100), and us-
ing the HF to dynamically localize (HF100).

Figure 3 shows that the data assimilation effectively
reduces the ensemble-mean RMSE, and that the local-
ization has little effect with a 100-member ensemble.
Without data assimilation (dotted curve), the ensemble
maintains the initially saturated error levels in both T
and Q. The U-wind error continues to grow through the
analysis period, suggesting that the column model may
have sensitivities that are not present in the 3D WRF
model. The substantial error reduction occurring when
near-surface observations are assimilated at hour 13
(solid curve) demonstrates the effectiveness of the as-
similation.

The fact that the dynamic localization does not have
much effect can suggest either one of two possibilities:
that the ensemble is large enough to produce well-
sampled covariances or that the localization is weak.
Qualitatively, the localization appears somewhat weak
(Figs. 1 and 2), but the evidence presented below sug-
gests that an ensemble of 25 members (the size of each
group) is nearly sufficient to capture the variability of

FIG. 2. Same as in Fig. 1 but valid at 1200 UTC.
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the column system. The error in Q analyses is slightly
higher when localization is imposed, suggesting that the
localization is withholding useful information from the
assimilation process. The need for localization should
thus be carefully evaluated before it is applied.

Spread–skill ratios (Fig. 4) support the notion that
the localization is unnecessary for a 100-member en-
semble. The free-running forecast (NO100) maintains a
constant averaged spread–error ratio near 1.0 for all
three quantities. The ratios become noisier, and the
mean values drop slightly, when observations are as-
similated. Whether or not localization is imposed has
little bearing on the ensemble behavior described by
this metric.

The effects of localization can also be summarized by
examining the variability in the prior error-covariance
matrices (e.g., Hamill et al. 2001). Figure 5 shows the
time- and experiment-averaged eigenvalue spectra for
the 100-member ensemble-estimated temperature-
error-covariance matrices. Introduction of assimilated
observations has the effect of slightly reducing the vari-

ability in all modes with positive eigenvalues, corre-
sponding to a reduction in the ensemble spread. For
both experiments NO100 and NL100 the matrices are full
rank, and the number of positive eigenvalues is equal to
the dimension of the temperature state space (33). Lo-
calization in the full ensemble has the effect of flatten-
ing the spectrum while eliminating some trailing modes
of variability. The potentially detrimental effects of the
truncation cannot be seen in the assimilation perfor-
mance within the relatively short cycling period of 36 h,
suggesting these modes are not particularly important
in this implementation.

Localization results in a flatter spectrum, similar to
the behavior found in Hamill et al. (2001) and Furrer
and Bengtsson (2007). This would appear to be a gen-
erally positive effect, but in this case it corresponds to a
reduction in the rank of the prior covariance matrices.
Variance associated with the trailing modes is removed
and injected closer to the leading modes. Here we sim-
ply conclude that the flatness of the eigenvalue spec-
trum of error covariance may be a useful diagnostic of

FIG. 3. Ensemble-mean RMSE over the profiles for (a) T, (b) U, and (c) Q for large ensembles. Solid curves show
the no-localization case (NL100), dashed curves show errors with dynamically estimated localization (HF100), and
dotted curves show errors with no assimilation (NO100).

FIG. 4. Ensemble spread–error ratio averaged over the profiles for (a) T, (b) U, and (c) Q for large ensembles.
Solid curves show the no-localization results (NL100), dashed curves show ratios with dynamically estimated
localization (HF100), and dotted curves show ratios with no assimilation (NO100).

1026 M O N T H L Y W E A T H E R R E V I E W VOLUME 135



the overall effect of localization, but it cannot deter-
mine whether the effect on assimilation will be positive
or negative. This effect is further explored in section 5.

4. Localization for degenerate ensembles

In this section, the quality of the assimilation is ex-
amined for smaller ensembles (N � 10) using different
localization methods. The small size of the ensemble
introduces noise to the background error covariance
and results in sampling error, which is partially ad-
dressed by localization (Houtekamer and Mitchell
1998, 2001; Hamill et al. 2001; Mitchell et al. 2002). We
first quantify the effects on spread and skill, and then
examine the performance enhancements when localiza-
tion functions are used. The HF approach is compared

to the more common GC function. In section 5, the
rank is estimated, and we try to reconcile the perfor-
mance.

a. Small ensembles and rank deficiency

Reducing the size of the ensemble by one order of
magnitude results in poor skill and inconsistency be-
tween the spread and the skill. Although this is a well-
known effect of small ensembles (e.g., Houtekamer and
Mitchell 1998; van Leeuwen 1999), we quantify the ef-
fect here to provide context for the experimental re-
sults.

The effect on skill for this system is shown in Fig. 6.
The asymptotic temperature error increases from near
0.9 to 1.3 K when the number of ensemble members is
reduced from 100 to 10 and no localization is imposed.
Wind errors at the final analysis time are greater by 1.5
m s�1. The effect on the moisture profile is more se-
vere, and the error at 36 h actually surpasses the en-
semble-mean error in the free-running 100-member
forecast (cf. Fig. 3c). This may be the result of spurious
covariance estimates arising near the interface between
the PBL and the free atmosphere aloft. The error-
covariance structure in the large ensemble is not
smooth (Figs. 1c and 2c), and the small ensembles may
not adequately sample that structure.

The ratio between spread and skill also suffers (Fig.
7). Temperature and moisture ratios appear to asymp-
tote to about 0.4 by 36 h. Although the magnitude of
the increase in temperature error is not large, it is rela-
tively large (�45%), and the spread of the small en-
semble cannot increase accordingly. The same is true
for the moisture profiles. The effect on winds is not as
great, fluctuating about 0.6 through most of the analysis
period. The wind-error increase is also relatively large
(�35%), but the small ensemble appears more capable
of a corresponding increase in spread in the wind. This

FIG. 6. Ensemble-mean RMSE over the profiles for (a) T, (b) U, and (c) Q for comparing large and small
ensembles. Solid curves show the large-ensemble no-localization case (NL100), dash–dotted curves show errors for
the small ensemble and no localization (NL10), and dotted curves show errors with no assimilation (NO100).

FIG. 5. Time-averaged leading eigenvalues of the prior T local-
ized covariance matrices for large ensembles. The solid curve
shows the no-localization case (NL100), the dashed curve shows
eigenvalues with dynamically estimated localization (HF100), and
the dotted curve shows eigenvalues with no assimilation (NO100).
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is consistent with the sensitivity shown in the NO100

curve (Fig. 6b).

b. Comparison of localization methods

The HF provides an estimate of the sampling error
associated with a particular ensemble size, which is 10
for the small ensembles here. Thus, it is inappropriate
to use the 100-member (4 � 25) ensembles to find lo-
calization functions for 10-member ensembles. Instead,
a separate set of 100 ensembles, with M � 4 groups of
N � 10 members, is used to produce RCF “lookup
tables” for experiments with the small ensembles. The
RCFs are functions of the observed variable and state
variable types, the time of day, the particular ensemble
members in each group, and the flow. To produce one
repository of localization functions, we average over the
100 experiments. This results in independent localization
functions for each (observation, state variable) combi-
nation and time of day. Experiments using these func-
tions are denoted HF10. Further averaging over time of
day, to produce another repository, results in single
(stationary) functions for each observed variable type.
Experiments using these functions are denoted HFS10.

Additionally, GC localization functions can be tuned
directly with the 100-member ensemble because we
consider the covariances estimated from this ensemble
to be relatively free of noise. Gaspari–Cohn functions
are typically functions of distance alone, C(z), with ra-
dius determined by a distance zc, where C(zc) � 0 and
shape determined by an inflection point typically
placed at zc /2. Equation (4.10), which defines the GC
function in Gaspari and Cohn (1999), is reproduced in
appendix C for reference. Similar to Furrer and Bengts-
son (2007), we choose an “optimal localization func-
tion” of the GC class by minimizing the mean squared
error (MSE) of a localized estimate of the covariance

matrix and a “true” covariance matrix. Using the fore-
cast xf and linear forward operator H, define the true
covariance matrix Pf with the joint (Hxf, xf) covariances
computed from the 100-member ensemble with as-
similation (NL100), and an estimate of the covariances
from the rank-deficient ensemble (NL10) as Pf̂. The lo-
calized estimate of the covariance is then the element-
wise multiplication C�Pf̂, where the elements of C are
C( |zobs � zj |) for observation location zobs and grid-
point location zj. The MSE as a function of time and
distance for all (expected observation, state variable)
combinations in (Hxf, xf) is

E � trace�Pf � C�Pf̂ �2, �1�

where the mean is taken over the 100 individual experi-
ments. The resulting E as a function of zc in grid points,
for observations of T2 and profiles of T, is shown in
Fig. 8.

The GC localization function for each (observation,
state variable) combination and analysis time is defined
by choosing zc at the minimum in the error curves such
as those shown in Fig. 8. These curves show that the
error in the localized covariances is insensitive to zc for
zc greater than some threshold. This result holds for all
times and variable combinations. Despite the flat
curves, minima are present at grid points 114 and 73 for
0000 and 1200 UTC, respectively, and were found for
nearly all other variable combinations as well (localiza-
tion was not performed when a global minimum was
absent). The minimum in each curve determines zc for
that time of day and (observation, state variable) com-
bination. Experiments localizing with the resulting GC
functions are denoted GC10. Many of the best-fit func-
tions result in very weak localization, since these func-
tions are greater than 0.5 through the entire domain

FIG. 7. Ensemble spread–error ratio averaged over the profiles for (a) T, (b) U, and (c) Q for comparing large
and small ensembles. Solid curves show the large-ensemble no-localization case (NL100), dash–dotted curves show
ratios for the small ensemble and no localization (NL10), and dotted curves show ratios with no assimilation
(NO100).
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when zc � 97 grid points. One of the glaring exceptions
results from the covariance of temperature observa-
tions with moisture profiles, with consequences dis-
cussed below.

The diurnal nature of the optimal zc for temperature
is shown in Fig. 9. This curve reflects the intuition that
during the day the well-mixed PBL produces deeper
covariance structures. At the peak during the middle of
the day (hour 25), the localization at the top of the
domain is approximately 0.68. During the night (hours
30–36) the values at the top of the domain are approxi-
mately 0.3. For each (observation, state variable) com-
bination, the parameter zc is averaged over time of day
to give stationary GC localization functions for the
small-ensemble experiments. Experiments localizing
with these are denoted GCS10.

It is important to note that finding the optimal local-
ization functions for all (observation, state variable)
combinations in a large system would be computation-
ally infeasible. To quantify the importance of the full
multivariate optimization for this system, an additional
experiment is introduced. The functions optimized for
the (T2, T) joint space are used for all (observation,
state variable) combinations, making the localization a
function of distance only. This is denoted GCD10.

Comparisons between HF10 and GC10 show different
effects for different variables. For temperature, these
localization approaches improve neither the skill nor
the spread–error ratio (Figs. 10a and 11a). Both ap-
proaches improve skill and the spread–skill ratio for the
winds by nearly 1.0 m s�1 and 0.2, respectively (Figs.
10b and 11b), but choosing a clear winner is difficult.
Skill also improves for the moisture (Figs. 10c), where

both localization approaches reduce the error by ap-
proximately 15%. GC10 appears to have an advantage
here by improving the final spread–error ratio to 0.85
(Fig. 11c).

One possible explanation for the advantage of GC10

over HF10 for moisture lies in the multivariate relation-
ships. The univariate localization (observations and
state of the same type) is weak for the optimized GC
functions, and one expects the assimilation should be-
have more like the experiment that did not impose lo-
calization (NL10). The HF generally imposes tighter lo-
calization but still permits spatially distant variables to
be updated in the assimilation. The localization im-
posed in the moisture profiles, when T2 is assimilated, is
an exception where the GC localization is tighter than
the HF localization. Figure 12 shows the time-mean
localization functions, where larger values for the HF10

localization permit more impact from temperature ob-
servations. The localization for experiment GCD10

shows that localization based on multivariate optimiza-
tion is much different from that based on distance alone
or optimized for a different variable. Figures 10, 11, and
12 suggest that spurious covariances between T2 and
moisture profiles, which degrade the impact of the ob-
servations, are retained for small ensembles with weak
localization. These results are consistent with the analy-
sis in Hacker and Snyder (2005), which shows weak
vertical cross correlations between expected observa-
tions and state variables of different types in a column
of the full WRF modeling system.

c. Time-dependent and stationary localization

The influence of the diurnal cycle on the vertical lo-
calization of near-surface observations is clear from

FIG. 8. MSE of the localized small-ensemble covariance esti-
mate for T2 and T profiles. It is presented as a function of the
cutoff grid point for the localization function C(zc). The vertical
line denotes the size of the model in grid points (33).

FIG. 9. Optimal zc for the GC localization function in
temperature, as a function of analysis time.
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Figs. 1, 2, and 9. Here we measure the importance of
accounting for it. For a large NWP model, tuning and
maintaining a different localization function for each as-
similation time and observation may prove intractable.
One way to reduce the burden is to find time-averaged
localization functions. These could be either optimized
GC functions (experiment GCS10) or be a time average
of the hierarchical estimates (experiment HFS10).

The skill and spread–error ratios suggest that time
variation is not particularly important for this problem.
Figure 13 shows that, in general, the difference between
classes of localization function is greater than the dif-
ference between time-varying and stationary functions.
Frequently the differences are small but are most no-
ticeable in the last few hours of the assimilation period,
when the skill for GC10 (HF10) and GCS10 (HFS10) are
nearly identical for temperature and winds. Although
this characterization is not observed in the skill of the

moisture profiles, it is obvious in the spread–skill ratios
(Fig. 14), where the performance difference is greatest.
From these results and the results of the last subsection,
we deduce that the multivariate relationships are more
important than time dependence for vertical localiza-
tion of near-surface observations.

5. Effect on rank-deficient covariances

As mentioned earlier, previous studies have used
eigenvalue spectra as evidence that localization is
achieving a desirable effect (e.g., Hamill et al. 2001;
Furrer and Bengtsson 2007), because it indicates that
the covariance matrix estimated from a small ensemble
improves in rank (becomes less rank deficient). The
argument is based on the notion that a flatter spectrum
indicates that the covariance matrix better samples all
the modes of variability in the system. Here we examine

FIG. 11. Ensemble spread–error ratio averaged over the profiles for (a) T, (b) U, and (c) Q for evaluating the
effect of time-dependent localization on small ensembles. Dash–dotted curves show the no-localization case
(NL10), dashed curves show ratios with localization by archived HF runs (HF10), dotted curves show ratios with
localization by optimized GC functions (GC10), and widely spaced dashed curves show ratios when using the GC
functions of only distance (GCD10).

FIG. 10. Ensemble-mean RMSE over the profiles for (a) T, (b) U, and (c) Q for evaluating the effect of
time-dependent localization on small ensembles. Dash–dot curves show the no-localization case (NL10), dashed
curves show errors with localization by archived HF runs (HF10), dotted curves show errors with optimized GC
localization (GC10), and widely spaced dashed curves show errors when using the GC functions of only distance
(GCD10).
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the joint-state (observation, state variable) covariances
for evidence of rank improvements.

Comparison of eigenvalue spectra for joint-state er-
ror covariances in the large ensembles shows that lo-
calization across different physical quantities can cause
a loss of useful information in a well-sampled system.
Results in section 3b showed that localization has a
small, but negative, effect on the skill for Q when as-
similating with large ensembles. Figure 5 demonstrates
that the localization truncates the eigenvalue spectrum
for the (T2, T) joint-state error covariance, while inflat-
ing the variance in the leading modes that are retained.

The same behavior is observed for the (Q2, Q) joint
state (not shown). A different result can be seen in Fig.
15, which shows the eigenvalue spectra for the (T2, Q)
joint-state error covariance estimated from the same
100-member ensembles. The hierarchical filter again
truncates the spectrum, leading to some rank defi-
ciency, but here does not produce any flattening to
compensate. The same behavior is observed for the
(U10, Q) joint state (not shown). In both cases, local-
ization causes covariances in the trailing modes to be
ignored in the assimilation process. For (Q2, Q), in-
creased variability in the leading modes may compen-
sate, but for (T2, Q) no such compensation is evident.
These spectra suggest that the truncation resulting from
localization in the multivariate joint states of observa-
tions with profiles of Q is throwing out useful informa-
tion leading to the loss of skill shown in Fig. 3c.

Eigenvalue spectra for covariances estimated from
the small ensembles, which we know are degenerate,
show the expected rank improvement resulting from
localization. Figure 16 shows results for temperature
alone, demonstrating both a flattening of the spectrum
and improved rank for both the GC and HF localiza-
tion. But the metrics in section 4 (Figs. 10a and 11a) do
not show any real benefit to localization in the tem-
perature state, indicating that improved rank does not
guarantee better assimilation performance.

The eigenvalue spectra of error covariances esti-
mated for the (T2, Q) joint state are more consistent
with the assimilation results. Figure 17 shows that the
GC localization greatly improves the rank, but the HF
localization slightly reduces the rank with no commen-
surate flattening of the spectrum. Rather it reduces the
variability in the modes that are already well sampled in
the 10-member ensembles. This can be further under-

FIG. 13. Ensemble-mean RMSE over the profiles for (a) T, (b) U, and (c) Q for comparing time-dependent and
stationary localization. Dashed curves show the case with time-dependent localization by archived HF runs (HF10),
double-dashed curves show errors with a time-averaged HF localization (HFS10), dotted curves show errors with
time-dependent GC localization (GC10), and triple dot–dashed curves show errors with a time-averaged GC
localization (GCS10).

FIG. 12. Time-mean regression localization functions for
observations of T2 regressing onto the moisture profiles.
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stood by referring to Fig. 12, which shows strong local-
ization with the optimized GC function, but no effective
tapering of the covariances with the HF. The HF local-
ization reduces the impact of T2 on the moisture state,
both near the surface and aloft, with a somewhat uni-
form magnitude. The GC function eliminates covari-
ances between T2 and the moisture profile aloft, while
the HF function permits them. The small ensemble ap-
parently produces spurious covariance estimates at
those distances, and a rank improvement coincides with
improved assimilation performance.

Contrary to the effect on large ensembles, where lo-
calization eliminates useful information in the multi-
variate joint-state error covariances, the weaker HF lo-
calization retains too much information from the small
ensembles. The rank of the joint-state covariance is not

improved, and the reduction in covariance throughout
the domain actually reduces the signal-to-noise ratio in
them. Thus, it is the localization of (Q2, Q) covariances
in the HF that produces the improvement over NL10,
but it is not enough to result in better performance than
GC10. The corresponding (Q2, Q) eigenvalue spectra
(not shown) support this.

The results of this section further demonstrate that
the eigenvalue spectra alone are not enough to under-
stand the effects of localization, and that other metrics
must be included in any useful analysis. Additionally,
we again emphasize that the GC functions used in this
study are optimized for every (observation, state vari-
able) combination. This exercise would be impossible
to complete with an NWP model and many observa-
tions. The hierarchical filter is able to more efficiently

FIG. 15. Time-averaged leading eigenvalues of the prior (T2, Q)
joint-state localized covariance matrices for large ensembles.

FIG. 16. Time-averaged leading eigenvalues of the prior (T2, T )
joint-state localized covariance matrices for small ensembles.

FIG. 14. Ensemble spread–error ratio averaged over the profiles for (a) T, (b) U, and (c) Q for evaluating the
effect of time-dependent localization on small ensembles. Dashed curves show the case with time-dependent
localization by archived HF runs (HF10), double-dashed curves show ratios with a time-averaged HF localization
(HFS10), dotted curves show ratios with time-dependent GC localization (GC10), and triple dot–dashed curves
show ratios with a time-averaged GC localization (HFS10).
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produce estimates of appropriate localization functions
that result in assimilation performance only slightly be-
low that of the optimized GC functions.

6. Summary

Within a simplified dynamic column-model system,
including PBL, surface layer, and land surface param-
eterizations, and an ensemble-filter data assimilation
system we have explored vertical localization for near-
surface observations. The primary point of comparison
is between localization functions gleaned from the hi-
erarchical filter approach of Anderson (2006) and the
fifth-order piecewise rational function of Gaspari and
Cohn (1999), which has been used extensively for en-
semble-based assimilation. The hierarchical filter al-
lows for arbitrary localization functions for any (obser-
vation, state variable) combination, or more generally
any (observation, parameter) combination when model
parameters are included in the state vector. The local-
ization functions, called regression confidence factors
(RCFs), can be derived from a limited number of as-
similation experiments. Examples show that the RCFs
are temporally variable and are not necessarily mono-
tonic (Figs. 1 and 2). The GC localization is a mono-
tonically decreasing function of distance in the model
coordinate system. Here, those are tuned for every type
of observation and state variable combination sepa-
rately, and for each analysis time of day, and can be
called optimal in some sense. Such an exercise would be
computationally infeasible with an advanced mesoscale
modeling and data assimilation system.

Large ensembles (100 members) provide baseline
performance statistics for the free-running ensembles,

while assimilation experiments show the maximum
positive impact of synthetic 2-m temperature and mix-
ing ratio (T2, Q2) and 10-m winds (U10, V10). The results
show that the observations provide information about
the state of the column and the implied uncertainty, and
also that localization does not add any value when the
ensembles are sufficiently large (Figs. 3 and 4). The
eigenvalue spectra of covariance matrices estimated
from the ensembles show that they are full rank without
any localization. The imposed localization actually
truncates the spectrum, moving some of the variance in
the trailing eigenvectors up the spectrum (Fig. 5), with-
out harming assimilation performance.

Small ensembles (10 members) demonstrate the need
for vertical localization and also the relative perfor-
mance of the different approaches (Figs. 6, 7, 10, and
11). Both approaches effectively improve the assimila-
tion performance for winds and moisture, though nei-
ther achieves the performance of the large ensembles.
It is difficult to determine whether the RCFs or the GC
functions are better, though the latter at times appears
to marginally outperform the former. The slight advan-
tage may be due to second-order sampling error that
arises because of the small number of groups (4) used
to estimate the RCFs (Anderson 2006). When a single
GC function is used for all (observation, state variable)
combinations, so that it is a function of distance alone,
the performance dramatically deteriorates.

Despite the large variation in time (diurnal cycle), a
stationary function appears to be sufficient for average
performance metrics (Figs. 13 and 14). This somewhat
surprising result, combined with the other results sum-
marized above, suggests that localizing with different
functions for different (observation, state variable)
combinations is the most important factor.

The decision to use the hierarchical approach or the
optimization approach depends on several consider-
ations. In both cases, large ensembles are needed to
obtain statistics. In the hierarchical case, the tuning en-
semble needs to be M times the size of the ensemble
that one could afford to run regularly, where M could
be as small as four but may need to be larger. In the GC
case, an ensemble large enough to give confidence that
the covariances are sampled with little error is required.
For both, enough cases or assimilation cycles would
need to be run with the large ensembles to get statistics
that converge. The size of the state and the number of
observations are further considerations in the optimi-
zation procedure. The additional possibility of includ-
ing model parameters in the localization procedure,
which may prove a fruitful research topic, is an advan-
tage inherent to the HF that may not be available when
distance-dependent localization functions are specified.

FIG. 17. Time-averaged leading eigenvalues of the prior (T2, Q)
joint-state localized covariance matrices for small ensembles.
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The localization problem will get worse with more
observations and more model columns, as exist in a
typical mesoscale NWP implementation, because of the
likelihood of increased noise in the covariance esti-
mates. Here we have compiled robust statistics with a
simplified modeling system. Quantitative results are
only valid for this model and configuration, but they
should qualitatively extend to other similar systems.
Undoubtedly the results will change when observations
aloft are also assimilated, and full 3D dynamics are
included. When observations aloft are assimilated, we
can expect a decrease in the correlation of near-surface
observations with their overlying profiles, enhancing
the need for localization. The full 3D dynamics also add
noise to covariance estimates, and the use of real ob-
servations will impose additional challenges. The re-
sults of this work can serve as a basis for comparison
and will help guide experiment design for the more
expensive experiments necessary to understand the
complete effects of vertical localization of near-surface
observations.
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APPENDIX A

Model Details

A 1D model similar to the WRF model is developed
to study boundary layer and surfaces processes using
physical parameterizations of the original 3D model.
The atmospheric model consists of momentum, ther-
modynamic, and moisture conservation equations writ-
ten as

�u
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� f�� � Vg� �

�

�z 	u�w�
, �A1�

��
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�
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Geostrophic wind (Ug, Vg) is obtained from the
hourly 3D WRF forecasts and interpolated linearly to
the current model time. Divergences of fluxes �	w�
�
/
�z, where 
 is any of u, �, �, or q, are provided by a
boundary layer scheme. Equations are solved implicitly
to prevent numerical instabilities in the diffusion equa-
tion and due to the Coriolis terms. The atmospheric
model is coupled with the LSM, which also uses radia-
tive fluxes from the 3D model in calculating the surface
energy balance.

In the present application turbulence is parameter-
ized with the Eta implementation of 1.5-order closure
of Mellor and Yamada (1982), by Janjić (2001), coupled
with the Noah LSM (Mitchell 2000). The turbulence
parameterization employs the prognostic equation for
the turbulent kinetic energy (TKE) with the assump-
tion of downgradient diffusion and pressure covariance,
and a diagnostic equation for potential temperature
and moisture covariance. Janjić (2001) imposed addi-
tional restrictions on the value of TKE and master
length scale, revised empirical constants, and devised a
novel method to solve the TKE equation. The master
length scale is computed diagnostically. Surface layer
parameterization follows Monin–Obukhov similarity
theory extended by Beljaars and Holtstag (1991) to free
convection regime with roughness scales for momen-
tum, temperature, and moisture calculated using Zil-
itinkevich (1995) formulas. The Noah LSM (Mitchell
2000) is composed of a four-layer soil temperature and
moisture model plus canopy moisture and snow cover
parameterizations. It provides sensible and latent heat
fluxes to the atmospheric model taking into account
atmospheric model output and land use characteristics,
such as vegetation type and soil texture.

APPENDIX B

Localization Using the Hierarchical Filter

Assume that M groups of N-member ensembles
(M � N total members) are available. When using lin-
ear regression to compute the increment in a state vari-
able x, given increments for an observation variable y,
M sample values of the regression coefficient, �, are
available. The regression coefficient for each group is
calculated as in a standard ensemble filter: �i � �x,y /
�y,y, where the numerator is the prior sample covari-
ance of the state variable x with the observed variable
y, and the denominator is the prior variance of the
observed variable. Both are computed using the N
members of the ith group. Without defining the “cor-
rect” regression factor (more details can be found in
Anderson 2006), a regression confidence (weighting)
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factor � is defined to minimize the expected RMS dif-
ference between the increment in a state variable and
the increment that would be used if the correct regres-
sion factor were used:

�min �
1

M � 1����i�1

M

�i�2

�
i�1

M

�i
2 � � 1� . �B1�

An additional constraint, �i � 0, is applied to ensure
that �min � 0. The regression is completed for each
ensemble using its sample regression coefficient multi-
plied by �min, equivalent to a localization function that
is not necessarily a function of distance from y.

An RCF is computed for every (observation, state
variable) pair. For analysis it is convenient to plot seg-
ments of the state determined by the type of physical

quantity (e.g., temperature). In the text the (observa-
tion, state variable type) is referred to as an (observa-
tion, state) pair, which can be thought of as a function
in state space.

APPENDIX C

Localization Using a Piecewise Rational Function

The fifth-order piecewise rational function of Gas-
pari and Cohn [1999, their Eq. (4.10)] has been used as
both a covariance function and a localization function
in data assimilation. It is a homogeneous and isotropic
correlation function on R 3 and is similar in shape to a
compact Gaussian function. Here we repeat it for ref-
erence.

Given a constant scaling distance zc and inflection
point at c � zc /2, the remaining independent variable is
distance z from the observation location:
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